skip to main content


Search for: All records

Creators/Authors contains: "Strauss, Marie E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dicyano-functionalized benzene and naphthalene anion derivatives exhibit a relatively rich population of electronically excited states in stark contrast to many assumptions regarding the photophysics of anions in general. The present work has quantum chemically analyzed the potential electronically excited states of closed-shell anions created by replacing hydrogen atoms with valence-bound lone pairs in benzene and naphthalene difunctionalized with combinations of -CN and -C2H. Dicyanobenzene anion derivatives can exhibit dipole-bound excited states as long as the cyano groups are not in para position to one another. This also extends to cyanoethynylbenzene anions as well as deprotonated dicyano- and cyanoethynylnaphthalene anion derivatives. Diethynyl functionalization is less consistent. While large dipole moments are created in some cases for deprotonation on the -C2H group itself, the presence of electronically excited states beyond those that are dipole-bound is less consistent. Beyond these general trends, 2-dicyanonaphthalene-34 gives strong indication for exhibiting a quadrupole-bound excited state, and the 1-cyanoethynylnaphthalene-29 and -36 anion derivatives are shown to possess as many as two valence-bound excited states and one dipole-bound excited state. These photophysical properties may have an influence on regions where polycyclic aromatic hydrocarbons are known to exist such as in various astrochemical environments or even in combustion flames. 
    more » « less
  2. Functionalizing deprotonated polycyclic aromatic hydrocarbon (PAH) anion derivatives gives rise to electronically excited states in the resulting anions. While functionalization with −OH and −C 2 H, done presently, does not result in the richness of electronically excited states as it does with −CN done previously, the presence of dipole-bound excited states and even some valence excited states are predicted in this quantum chemical analysis. Most notably, the more electron withdrawing −C 2 H group leads to valence excited states once the number of rings in the molecule reaches three. Dipole-bound excited states arise when the dipole moment of the corresponding neutral radical is large enough (likely around 2.0 D), and this is most pronounced when the hydrogen atom is removed from the functional group itself regardless of whether functionalized by a hydroxyl or enthynyl group. Deprotonatation of the hydroxyl group in the PAH creates a ketone with a delocalized highest occupied molecular orbital (HOMO) unlike deprotonation of a hydrogen on the ring where a localized lone pair on one of the carbon atoms serves as the HOMO. As a result, hydroxyl functionlization and subsequent deprotonation of PAHs creates molecules that begin to exhibit structures akin to nucleic acids. However, the electron withdrawing −C 2 H has more excited states than the electron donating −OH functionalized PAH. This implies that the −C 2 H electron withdrawing group can absorb a larger energy range of photons, which signifies an increasing likelihood of being stabilized in the harsh conditions of the interstellar medium. 
    more » « less